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Abstract. We continue our study of non-Abelian gauge theories in the framework of the Epstein–
Glaser approach to renormalization theory. We consider the case when massive spin-1 bosons are
present in the theory and we modify appropriately the analysis of the origin of the gauge invariance
performed in a preceding paper in the case of null-mass spin-1 bosons. Then we are able to extend
a result of Dütsch and Scharf concerning the uniqueness of the standard model, consistent with
renormalization theory. In fact we consider the most general case, i.e. the consistent interaction
of r spin-1 bosons, and we do not impose any restrictions on the gauge group and the mass
spectrum of the theory. We show that, besides the natural emergence of a group structure (as in the
massless case), we obtain new conditions of a group theoretical nature, namely the existence of a
certain representation of the gauge group associated to the Higgs fields. Some other mass relations
connecting the structure constants of the gauge group and the masses of the bosons emerge naturally.
The proof is carried out using the Epstein–Glaser approach to renormalization theory.

1. Introduction

The traditional approach to renormalization theory starts from Bogoliubov axioms imposed on
the S-matrix (or equivalently on the chronological products) and translates them into axioms
on the Feynman amplitudes (the so-called Hepp axioms). Then one tries to find explicit
solutions of these axioms using some regularization procedure and extracting, in a consistent
way, the ultraviolet infinities. Even for a real scalar field this task is not very easy, but the
theory becomes extremely complicated when one considers systems with gauge invariance.
Rigorous analysis performed by Becchi, Rouet and Stora shows the tremendous complexity
of the theory. In recent years, a new way to consider renormalization theory was advocated by
Professor G Scharf starting from the analysis of Epstein and Glaser [13]. In this approach one
also starts from Bogoliubov axioms on the chronological products, but one tries to find solutions
in a purely recursive way using the support properties of various distributions appearing in the
problem and a procedure called distribution splitting. More importantly, in this approach
one can shed new light on the problem of gauge invariance: one can argue that a consistent
interaction (in the sense of perturbation theory) involving spin-1 bosons should be a gauge
invariant interaction.

In a preceding paper [16] we extended a result of Aste and Scharf [1] concerning the
uniqueness of the non-Abelian gauge theory describing the consistent interaction of r null-mass
bosons of spin-1. We showed that the gauge invariance principle is a natural consequence of the
description of spin-1 particles in a factor Hilbert space. Here, one considers an auxiliary Hilbert
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space Hgh (describing physical and ghost particles) and assumes the existence of a supercharge
Q operator acting in it. Then gauge invariance expresses the possibility of factorizing the S-
matrix to the physical space, which is usually constructed according to the cohomological-type
formula Hphys = Ker(Q)/Im (Q). The obstructions to such a factorization process are the well
known anomalies. The main problem in this approach is the fact that this factorization can be
implemented only in the adiabatic limit, so one has to solve simultaneously the ultraviolet and
the infrared problems. If the spin-1 bosons are massless, then one cannot solve this combined
problem. The case when the spin-1 bosons of non-null mass are admitted into the problem was
studied by Aste, Dütsch and Scharf [3,11] for the concrete case of the electroweak interaction,
i.e. when the gauge group is exactly SU(2)×U(1). In this paper we analyse the same problem
when considering that the spin-1 bosons can have non-null masses and we do not impose any
restriction on their number and masses (also we do not take into account matter fields). We will
show that in this case one can hope for a theory where the ultraviolet problems are completely
under control and the infrared problems seem to be less severe.

We should also mention that, as in [16], we fill a gap in the existing literature concerning the
legitimacy of using the identification Hphys = Ker(Q)/Im (Q). Indeed, from the physical point
of view, one should proceed in strict accordance with the dogma of the second quantization
of Fock–Cook as follows. One starts with a one-particle Hilbert space H which is usually
some representation of the Poincaré group; in our case we consider a massive spin-1 particle.
Then one chooses the statistics, which in this case should be Bose–Einstein, and considers
as a physical space the associated symmetric Fock space F+(H). It is not obvious that this
coincides with Hphys = Ker(Q)/Im (Q), although it is usually asserted that this follows from
the analysis of Kugo and Ojima [25]. In this paper, as in [16] for massless spin-1 bosons, we
prove that the identification of the two Hilbert spaces is a rigorous mathematical fact. As a
byproduct, we have a simpler analysis of the unitarity of the S-matrix.

Summing up, the main objective of this paper is to show that the very construction of
the standard model follows from Bogoliubov axioms and the factorization condition to the
physical Hilbert space Hphys; these conditions determine in a rather strict way the structure
of the interaction Lagrangian for (massive) bosons of spin-1. To make the connection with
the Feynman graph terminology, it will follow from the proof that only tree diagrams of the
first and second order of the perturbation theory are considered. The remarkable fact about
this approach is the fact that no classical Lagrangian, subject afterwards to some quantization
procedure, is needed.

We should also mention an apparent drawback of the approach, which is in fact common
to all known approaches to gauge theories. To construct the Hgh one has to consider some
explicit representations for the one-particle Hilbert space (for instance, to work with the
Wigner representation or the helicity representation for the irreducible projective unitary
representations of the Poincaré group). Also one has to add a set of ghost fields such that
the cohomology of the supercharge gives the physical Fock space. These two choices are
non-canonical, i.e. no formulae independent of the representation are available. Of course,
it is plausible to conjecture that for two distinct choices one gets the same physics, i.e. there
is a unitary transformation intertwining them. This conjecture is suggested by the analysis
of gauge theories in the framework of classical field theory where the ghost fields are some
canonical objects associated to a principal fibre bundle. In some particular cases, the conjecture
can actually be proved. For instance, one can consider some special choice for the Hilbert
space and the ghost fields corresponding to the so-called linear gauges. In these gauges the
S-matrix a priori depends on a gauge parameter and one can prove that this dependence drops
out after factorization to the physical Hilbert space [4].

We mention that since the first version of this paper was posted in the hep-th archive (hep-
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th/9810078) two other papers on the same subject have appeared [12, 27]. They are mainly
concerned with the case when all Bosons are massive and the adiabatic limit exists. The price
to pay is the introduction of some supplementary scalar fields.

The structure of the paper is as follows. In the next section we generalize the description
of non-null mass spin-1 bosons on similar lines as in [16]. A modification of the supercharge
will be necessary. As in [11] and [3], the appearance of the Higgs fields seems unavoidable. In
section 3 we construct the first-order S-matrix following closely the lines of the computations
from [16] to which we will frequently refer. We will also be able to give a generic form
for the second-order S-matrix. Next we impose gauge invariance for the second-order
perturbation theory and obtain, as expected, that the structure is rather tight, i.e. there are
severe restrictions on the various coefficients of the various Wick monomials entering the
interaction Lagrangian. Moreover we naturally obtain that some of these coefficients can
be organized into a representation of dimension r of the gauge group, which is nothing
more than the representation T of the Higgs fields. In particular, some very complicated
computations from [11], leading to the cancellation of possible anomalies, are nothing more
than the representation property of T . Some interesting mass relations connecting the structure
constants, the representation T and the masses of the bosons naturally emerge. These relations
seems to be new in the literature, at least to our knowledge, and they have the merit of having
a rigorous status.

Finally, we test the generic formalism on the standard model of electroweak interactions.
In this way the results of [3] are re-obtained. In the last section we list some future problems
which have to be solved.

Other papers also treating the quantization of massive bosons of spin-1 in the Epstein–
Glaser approach are [5–7, 18–20, 22] and [23].

Concerning the relationship between the Epstein–Glaser–Scharf approach and the
traditional ways of computing various effects in the standard model (see, for instance, [24])
we believe that no serious discrepancies should appear. We are basing this assessment on the
fact that the starting point is the same: the Bogoliubov axioms of perturbative renormalization
theory. On the other hand, one should note that the expression of the BRST transformation
in this approach is a linearized version of the usual one. This does not mean that the results
should be different from the usual approach but this point is not completely settled and deserves
further investigations. We should also mention a recent paper of [21] on the quantum Noether
method which can probably be used to derive the same results as ours and, moreover, to prove
equivalence with the results of the traditional approach.

2. Spin-1 relativistic free particles with positive mass

2.1. General description

As in [16], we take the one-particle space of the problem H to be the Hilbert space of a unitary
irreducible representation of the Poincaré group. We give below the relevant formulae for
particles of mass m > 0 and spin-1.

The upper hyperboloid of mass m � 0 is by definition the set of functions X+
m ≡ {p ∈

R
4|‖p‖2 = m2, p0 > 0} which are square integrable with respect to the Lorentz invariant

measure dα+
m(p) ≡ dp

2ω(p) (in fact only classes of functions identical up to null-measure sets
are considered). The conventions are the following: ‖ · ‖ is the Minkowski norm defined by
‖p‖2 ≡ p · p and p · q is the Minkowski bilinear form: p · q ≡ p0q0 − p · q.
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Let us consider the Hilbert space H ≡ L2(X+
m,C

4, dα+
m) with the scalar product

〈φ,ψ〉 ≡
∫
X+
m

dα+
m (p) 〈φ(p), ψ(p)〉C4 (2.1.1)

where 〈u, v〉C4 ≡∑4
i=1 uivi is the usual scalar product from C

4. In this Hilbert space we have
the following (non-unitary) representation of the Poincaré group:

(Ua,�φ)(p) ≡ eia·p� · φ(�−1 · p) for � ∈ L↑ (UIt φ)(p) ≡ φ(Is · p). (2.1.2)

We define on H the following non-degenerate sesquilinear form:

(φ, ψ) ≡
∫
X+
m

dα+
m (p) gµνφµ(p)ψν(p) (2.1.3)

where the indicesµ, ν take the values 0, 1, 2, 3 and the summation convention over the dummy
indices is used. This form behaves naturally with respect to the representation (2.1.2).

Now we immediately have the following.

Lemma 2.1. Let us consider the following subspace of H:

Hm ≡ {φ ∈ H|pµφµ(p) = 0}. (2.1.4)

Then the sesquilinear form (·, ·)|Hm
is strictly positively defined.

As a consequence we have the following.

Proposition 2.2. The representation (2.1.2) of the Poincaré group leaves invariant the
subspace Hm and the restriction of this representation to this subspace (also denoted by U ) is
equivalent to the unitary irreducible representation H[m,1] of the Poincaré group (describing
particles of mass m > 0 and spin-1 [28]).

By definition, the couple (Hm,U) is called a spin-1 boson of mass m.
We turn now to the second quantization procedure applied to such an elementary system.

We express the (bosonic) Fock space of the system

Fm ≡ F+(Hm) ≡ ⊕n�0H′n H′0 ≡ C (2.1.5)

as a subspace of an auxiliary Fock space

H ≡ F+(H) ≡ ⊕n�0Hn H0 ≡ C. (2.1.6)

One canonically identifies the nth-particle subspace Hn with the set of Borel functions
"(n)µ1,...,µn

: (X+
m)
×n→ C which are square summable:

∫
(X+

m)
×n

n∏
i=1

dα+
m (ki)

3∑
µ1,...,µn=0

|"(n)µ1,...,µn
(k1, . . . , kn)|2 <∞ (2.1.7)

and verify the symmetry property

"(n)µP(1),...,µP(n) (kP (1), . . . , kP (n)) = "(n)µ1,...,µn
(k1, . . . , kn) ∀P ∈ Pn. (2.1.8)

In H one has natural extensions of the expression of the scalar product (2.1.1) and of the
sesquilinear form (2.1.3). We also have a (non-unitary) representation of the Poincaré group
given by the well known formula Ug ≡ &(Ug), ∀g ∈ P; here Ug is given by (2.1.2).

Now one has the following from lemma 2.1.
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Lemma 2.3. Let us consider the following subspace of H:

H′ ≡ F+(Hm) = ⊕n�0H′n. (2.1.9)

Then H′n, n � 1 is generated by elements of the form φ1∨ · · · ∨φn, φ1, . . . , φn ∈ Hm and,
in the representation adopted previously for the Hilbert space Hn, we can take

H′n = {"(n) ∈ Hn|kν1
1 "

(n)
ν1,...,νn

(k1, . . . , kn) = 0}. (2.1.10)

Moreover, the sesquilinear form (·, ·)|H′ is strictly positively defined.

Finally we have the following.

Proposition 2.4. There exists a canonical isomorphism of Hilbert spaces

Fm � H′. (2.1.11)

Now we can define the corresponding field as an operator on the Hilbert space H in
complete analogy to the electromagnetic field: we define for every p ∈ X+

m the annihilation
and creation operators

(Aν(p)")
(n)
µ1,...,µn

(k1, . . . , kn) ≡
√
n + 1"(n+1)

ν,µ1,...,µn
(p, k1, . . . , kn) (2.1.12)

and

(A†
ν(p)")

(n)
µ1,...,µn

(k1, . . . , kn) ≡ −2ω(p)
1√
n

×
n∑
i=1

δ(p− ki)gνµi"
(n−1)
µ1,...,µ̂i ,...,µn

(k1, . . . , k̂i , . . . , kn). (2.1.13)

Then one has a list of properties which are formally identical to the corresponding one
from the null-mass case. First we have the canonical commutation relations (CAR)

[Aν(p),Aρ(p
′)] = 0 [A†

ν(p), A
†
ρ(p

′)] = 0
[Aν(p),A

†
ρ(p

′)] = −2ω(p)gνρδ(p− p′)1
(2.1.14)

and the relation

(A†
ν(p)*,") = (*,Aν(p)") ∀*," ∈ H (2.1.15)

which shows that A†
ν(p) is the adjoint of Aν(p) with respect to the sesquilinear form (·, ·).

Next we have a natural behaviour with respect to the action of the Poincaré group:

Ua,�Aν(p)U−1
a,� = eia·p(�−1) ρν Aρ(� · p) ∀� ∈ L↑

UIt Aν(p)U−1
It
= (It ) ρν Aρ(Is · p)

(2.1.16)

and a similar relation for A†
ν(p).

Finally, we define the field operators in the point x according to

Aν(x) ≡ A(+)ν (x) + A(−)ν (x) (2.1.17)

where the expressions appearing in the right-hand side are the positive (negative) frequency
parts and are defined by

A(+)ν (x) ≡
1

(2π)3/2

∫
X+
m

dα+
m (p)e

ip·xA†
ν(p)

A(−)ν (x) ≡ 1

(2π)3/2

∫
X+
m

dα+
m (p)e

−ip·xAν(p).
(2.1.18)

The properties of the field operators Aν(x) are contained in the following elementary
proposition.
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Proposition 2.5. The following relations are true:

(Aν(x)*,") = (*,Aν(x)") ∀*," ∈ H (2.1.19)

(� +m2)Aν(x) = 0 (2.1.20)

and

[A(∓)µ (x), A(±)ν (y)] = −gµνD(±)m (x − y)× 1 [A(±)µ (x), A(±)ν (y)] = 0. (2.1.21)

As a consequence we also have

[Aµ(x),Aν(y)] = −gµνDm(x − y)× 1, (2.1.22)

here

Dm(x) = D(+)m (x) +D(−)m (x) (2.1.23)

is the Pauli–Jordan distribution and D(±)m (x) are given by

D(±)m (x) ≡ ± 1

(2π)3/2

∫
X+
m

dα+
m (p)e

∓ip·x. (2.1.24)

Let us note that we have

(� +m2)D(±)m (x) = 0 (� +m2)Dm(x) = 0. (2.1.25)

We turn now to the constructions of observables on the Fock space of the spin-1 boson
Fm � H′ by self-adjoint operators on the Hilbert space H. IfO is such an operator on H′ then
it induces naturally an operator (also denoted byO) on H which leaves invariant the subspace
H′. These types of observables on H are called gauge invariant observables.

The description of possible interactions between the spin-1 field and matter follows the
same ideas. Let us consider that the (Fock) space of the ‘matter’ fields is denoted by Hmatter.
Then, in the hypothesis of weak coupling, one can argue that the Hilbert space of the combined
system is Htotal ≡ Fm ⊗ Hmatter. It is easy to see that, if we define H̃ ≡ H ⊗ Hmatter and
H̃′ ≡ H′ ⊗Hmatter, we have as before

Htotal � H̃′. (2.1.26)

In the Hilbert space H̃ we can define as usual the expressions for the spin-1 field and all
properties listed previously stay true. Typical interaction terms have the form

T1(x) ≡ Aν(x)jν(x) (2.1.27)

where jν(x) are some Wick polynomials in the ‘matter’ fields called currents. Then
conservation of the current is a sufficient and necessary condition such that the
expression (2.1.27) induces, in the adiabatic limit, a well defined expression on the Hilbert
space Htotal.

For higher-order chronological products, one can establish a similar expression:

Tn(x1, . . . , xn) ≡
n∑
k=0

: Aν1(x1) . . . Aνk (xk) : jν1,...,νk (x1, . . . , xn) (2.1.28)

and the condition of factorization, in the adiabatic limit, amounts again to the conservation
of the multi-currents jν1,...,νk (x1, . . . , xn). The conservation of these multi-currents can be
heuristically connected with the gauge invariance of the S-matrix (see [26] Ch 4.6).
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2.2. Quantization with ghost fields

In this subsection we give an alternative description of the Fock space Fm using the ghost
fields following rather closely the arguments from [16]. However, in the case of positive mass
particles it seems that it is not sufficient to introduce the Fermionic ghosts and one has also to
introduce a bosonic ghost.

In [16], the Hilbert space was constructed by acting on the vacuum state with the
electromagnetic potentials Aν and the pair of ghost fields of null mass and Fermi statistics
u and ũ. In the case of spin-1 bosons of massm > 0, we generate Hgh by acting on the vacuum
with the potentials Aν and the triplet of ghost fields of the same mass u, ũ and ", such that
the first two are Fermionic and the last one is a bosonic field. We will need some explicit
representation for Hgh. Taking into account the general structure outlined above, we should
have

Hgh = ⊕∞n,w,l,s=0Hnwls (2.2.1)

where one can identify Hnwls with the set of Borel functions "(nwls)µ1,...,µn
: (X+

0 )
n+w+l+s → C

which are square integrable with respect to the product measure (α+
m)
×(n+w+l+s)

∞∑
n,w,l,s=0

∫
(X+

m)
n+w+l+s

dα+
m (K) dα+

m (P ) dα+
m (Q) dα+

m (R)

×
3∑

µ1,...,µn=0

|"(nwls)µ1,...,µn
(K;P ;Q;R)|2 �∞ (2.2.2)

(hereK ≡ (k1, . . . , kn),P ≡ (p1, . . . , pw),Q ≡ (q1, . . . , ql) andR ≡ (r1, . . . , rl)), verifying
the symmetry property

"(nwls)µP(1),...,µP(n)
(kP (1), . . . , kP (n);pQ(1), . . . , pQ(w); qR(1), . . . , qR(l); rT (1), . . . , rT (s))
= (−1)|Q|+|R|"(nwls)µ1,...,µn

(k1, . . . , kn;p1, . . . , pw; q1, . . . , ql; r1, . . . , rs),
∀P ∈ Pn Q ∈ Pw R ∈ Pl T ∈ Ps . (2.2.3)

In this representation we can construct the following annihilation operators:

(Aν(t)")
(nwls)
µ1,...,µn

(k1, . . . , kn;P ;Q;R) = "(n+1,wls)
ν,µ1,...,µn

(t, k1, . . . , kn;P ;Q;R) (2.2.4)

(b(t)")(nwls)µ1,...,µn
(K;p1, . . . , pw;Q;R) = "(n,w+1,ls)

µ1,...,µn
(K; t, p1, . . . , pw;Q;R) (2.2.5)

(c(t)")(nwls)µ1,...,µn
(K;P ; q1, . . . , ql;R) = (−1)w

√
l + 1"(nw,l+1,s)

µ1,...,µn
(K;P ; t, q1, . . . , ql;R)

(2.2.6)

and

(a(t)")(nwls)µ1,...,µn
(K;P ;Q; r1, . . . , rs) =

√
s + 1"(nwl,s+1)

µ1,...,µn
(K;P ;Q; t, r1, . . . , rs). (2.2.7)

Similar expressions can be written for the creation operators. These verify usual canonical
(anti)commutation relations and behave naturally with respect to the Poincaré transform.

Then the fields

u(x) ≡ 1

(2π)3/2

∫
X+
m

dα+
m (q)[e

−iq·xb(q) + eiq·xc∗(q)] (2.2.8)

ũ(x) ≡ 1

(2π)3/2

∫
X+
m

dα+
m (q)[−e−iq·xc(q) + eiq·xb∗(q)] (2.2.9)

and

"(x) ≡ 1

(2π)3/2

∫
X+
m

dα+
m (q)[e

−iq·xa(q) + eiq·xa∗(q)] (2.2.10)
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are called Fermionic (resp. bosonic) ghost fields.
These verify the wave equations

(� +m2)u(x) = 0 (� +m2)ũ(x) = 0 (� +m2)"(x) = 0 (2.2.11)

and we have the usual canonical (anti)commutation relations

{u(x), ũ(y)} = Dm(x − y)1 ["(x),"(y)] = Dm(x − y)1 (2.2.12)

and all other (anti)commutators are null. Now we can define the operator

Q ≡
∫
X+
m

dα+
m (q)[k

µ(Aµ(k)c
∗(k) + A†

µ(k)b(k)) + im(a(k)c∗(k)− a∗(k)b(k))] (2.2.13)

called supercharge. Its properties are summarized in the following proposition which can be
proved by elementary computations. By "0 we denote the vacuum state.

Proposition 2.6. The following relations are valid:

Q"0 = 0 (2.2.14)

[Q,A†
µ(k)] = −kµc∗(k) {Q, b∗(k)} = kµA†

µ(k)− ima∗(k)
{Q, c∗(k)} = 0 [Q, a∗(k)] = imc∗(k)

(2.2.15)

[Q,Aµ(k)] = kµb(k) {Q, b(k)} = 0

{Q, c(k)} = kµAµ(k) + ima(k) [Q, a(k)] = imb(k)
(2.2.16)

{Q,u(x)} = 0 {Q, ũ(x)} = −i(∂µAµ(x) +m"(x))

[Q,Aµ(x)] = i∂µu(x) [Q,"(x)] = imu(x)
(2.2.17)

Q2 = 0 (2.2.18)

Im (Q) ⊂ Ker(Q) (2.2.19)

and

UgQ = QUg ∀g ∈ P. (2.2.20)

Moreover, one can express the supercharge in terms of the ghost fields as follows:

Q =
∫

R3
d3x (∂µAµ(x) +m"(x))

↔
∂0 u(x). (2.2.21)

(The succession of the preceding formulae suggests the most convenient way to derive
them; for instance, from (2.2.16) and (2.2.15) one derives that {Q,Q} = 0 and gets (2.2.18).
In particular (2.2.18) justifies the terminology of the supercharge and (2.2.19) indicates that it
might be interesting to take the quotient. Indeed, we will rigorously prove that this quotient
coincides with Fm.)

We can give the explicit expression of the supercharge in this representation. Starting
from the definition (2.2.13) we immediately get

(Q")(nwls)µ1,...,µn
(K;P ;Q;R) = (−1)w

√
n + 1

l

×
l∑
i=1

(−1)i−1qνi "
(n+1,w,l−1,s)
ν,µ1,...,µn

(qi, K;P ; q1, . . . , q̂i , . . . , ql;R)

−
√
w + 1

n

n∑
i=1

(ki)µi"
(n−1,w+1,l,s)
µ1,...,µ̂i ,...,µn

(k1, . . . , k̂i , . . . , kn; ki, P ;Q;R)

+im(−1)w
√
s + 1

l

l∑
i=1

(−1)i−1"(n,w,l−1,s+1)
µ1,...,µn

(K;P ; q1, . . . , q̂i , . . . , ql; qi, R)
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−im

√
w + 1

s

s∑
i=1

"(n,w+1,l,s−1)
µ1,...,µn

(K; ri, P ;Q; r1, . . . , r̂i , . . . , rs) (2.2.22)

where, of course, we use Bourbaki convention
∑
∅ ≡ 0.

Now we introduce on Hgh a Krein operator according to

(J")(nwls)(K;P ;Q;R) ≡ (−1)wl(−g)⊗n"(nlws)(K;Q;P ;R). (2.2.23)

The properties of this operator are contained in the following proposition.

Proposition 2.7. The following relations are verified:

J ∗ = J−1 = J (2.2.24)

Jb(p)J = c(p) J c(p)J = b(p)
JA∗µ(p)J = A†

µ(p) Ja(p)J = a(p) (2.2.25)

JQJ = Q∗ (2.2.26)

and

UgJ = JUg ∀g ∈ P. (2.2.27)

Here O∗ is the adjoint of the operator O with respect to the scalar product 〈·, ·〉 on Hgh.

We define, as usual, a sesquilinear form on Hgh according to

(*,") ≡ 〈*, J"〉. (2.2.28)

Then this form is non-degenerate. It is convenient to denote the conjugate of the arbitrary
operator O with respect to the sesquilinear form (·, ·) by O†, i.e.

(O†*,") = (*,O"). (2.2.29)

Then the following formula is available:

O† = JO∗J. (2.2.30)

As a consequence, we have

Aµ(x)
† = Aµ(x) u(x)† = u(x) ũ(x)† = −ũ(x) "(x)† = "(x). (2.2.31)

From (2.2.27) it follows that we have

(Ug*,Ug") = (*,") ∀g ∈ P↑ (UIt*,UIt") = (*,"). (2.2.32)

As in [16], we give a description of the factor space Ker(Q)/Im (Q). We will construct
a ‘homotopy’ for the superchargeQ.

Proposition 2.8. Let us define the operator

Q̃ ≡ − 1

2m2

∫
X+
m

dα+
m (q)[k

µ(Aµ(k)b
∗(k) + A†

µ(k)c(k)) + im(a∗(k)c(k)− a(k)b∗(k))].
(2.2.33)

Then the following relation is valid:

Y ≡ {Q, Q̃} = Na +Nb +Nc +X (2.2.34)

where Na (Nc,Nc) are particle number operators for the ghosts of type a (resp. b, c) and

X ≡ − 1

m2

∫
X+
m

dα+
m (k)k

µkνA†
µ(k)Aν(k). (2.2.35)

Moreover the following relations are true:

Q̃2 = 0 (2.2.36)

and

[Y,Q] = 0 [Y, Q̃] = 0. (2.2.37)
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The operator Q̃ it is called the homotopy of Q. The operator Y is not invertible, but as
in [16] we have the following.

Proposition 2.9. The operator Y |Hnwls
is invertible iff w + l + s > 0.

Proof. An alternative expression for the operator X defined by (2.2.35) is

X = A⊗ 1 (2.2.38)

where the operator A acts only on the bosonic variables and is given by the expression

A = d& (P ). (2.2.39)

Here d& is the familiar Cook functor defined by

d& (P )ψ1 ⊗ · · · ⊗ ψn ≡ Pψ1 ⊗ ψ2 · · · ⊗ ψn + · · ·ψ1 ⊗ ψ2 · · · ⊗ Pψn (2.2.40)

and the operator P is, in our case, given by

(Pψ)µ(k) ≡ 1

m2
kµk

νψν(k). (2.2.41)

We immediately obtain that P is a projector, i.e. P 2 = P , and we have, as in the case of
massless bosons of spin-1, the direct sum decomposition of the one-particle bosonic subspace
into the direct sum of Ran(P ) and Ran(1 − P). Let us consider a basis in the one-particle
bosonic subspace formed by a basis fi , i ∈ N of Ran(P ) and a basis gi , i ∈ N of Ran(1−P).
A basis in the nth-particle bosonic subspace is of the form

fi1 ∨ · · · fir ∨ gj1 ∨ · · · ∨ gjt r, t ∈ N r + t = n.
Applying the operatorA to such a vector gives the same vector multiplied by r . So, in the

basis chosen above, the operator A is diagonal with diagonal elements from N. It follows that
the operator Y |Hnwls

can also be exhibited into a diagonal form with diagonal elements of the
form w + l + s + r , r ∈ N. It is obvious that for w + l + s > 0 this is an invertible operator. �

Accordingly, we have the following corollary.

Corollary 2.10. Let us define H0 ≡ ⊕n�0Hn000 and H1 ≡ ⊕n�0,w+l+s>0Hnwls . Then the
operator Y has the block-diagonal form

Y =
(
Y1 0
0 Y0

)
(2.2.42)

with Y1 an invertible operator.

We now have the following fundamental result.

Proposition 2.11. There exists the following vector space isomorphism:

Ker(Q)/Im (Q) � H′ (2.2.43)

where the subspace H′ has been defined in the previous subsection (see the lemmas 2.3).

Proof. (i) As in [16] one can prove that if " ∈ Ker(Q) then we have the decomposition

" = Qψ + "̃ (2.2.44)

where

"̃(nwls) = 0 w + l + s > 0. (2.2.45)
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The condition Q" = 0 amounts now to Q"̃ = 0 or, with the explicit expression of the
supercharge (2.2.22),

qν"̃(n+1,0,0,0)
ν,µ1,...,µn

(q, k1, . . . , kn; ∅; ∅; ∅) = 0 ∀n ∈ N (2.2.46)

i.e. the ensemble {"̃(n00)}|n∈N is an element from H′ (see lemma 2.3).
It remains to see in what conditions such "̃ is an element from Im (Q), i.e. we have

"̃ = Qχ . It is clear that only the components χ(n100) should be taken non-null. Then the
expression of the supercharge (2.2.22) gives the following condition:

(Qχ)(n001)
µ1,...,µn

(K; ∅; ∅; r) = −imχ(n100)
µ1,...,µn

(K; r; ∅; ∅) = 0. (2.2.47)

Because the mass m of the boson is non-null, we get χ = 0 ⇒ "̃ = 0 and we obtain
the assertion from the statement. �

We finally get the following theorem as in [16].

Theorem 2.12. The isomorphism (2.2.43) extends to a Hilbert space isomorphism

Ker(Q)/Im (Q) � Fm
and the factorized representation of the Poincaré group coincides with the representation
acting into the space H′.

We close with an important observation. One can easily see that one can take the limit
m ↘ 0 in the expressions for the various Hilbert spaces and quantum fields and also on the
expression of the supercharge Q. (The expression Q̃ does not have the limit in the obvious
way, but this is not very important, because this expression had played only an auxiliary role.)
In this limit we can write

Hgh � Hgh
0 ⊗H" (2.2.48)

where Hgh
0 is the Hilbert space generated by the fields Aµ(x), u(x), ũ(x) and H" is generated

by the scalar ghosts. Then the supercharge (2.2.13) takes the form

Q = Q′ ⊗ 1 (2.2.49)

where Q′ coincides formally with the expression of Q for m ↘ 0 but acts only in Hgh
0 .

Moreover, we have

Ker(Q)/Im (Q) � Ker(Q′)/Im (Q′)⊗H" (2.2.50)

i.e. we can see that the states from H" decouple completely and can be considered physical.
Moreover, one can see that, in this case, nothing prevents us from considering that the scalar
‘ghost’ has a non-zero mass. This observation is essential for the construction of the standard
model, because a scalar ‘ghost’ field corresponding to a null-mass boson, if considered a
physical field of non-zero mass, is nothing more than the Higgs field [3]. Let us stress that
this observation has to be raised to the status of a postulate; it agrees with the construction
of the standard model as we shall see in the following section and brings no mathematical
inconsistencies.

2.3. Gauge-invariant observables

As in [16], we denote by W the linear space of all Wick monomials on the Fock space Hgh i.e.
containing the fields Aµ(x), u(x), ũ(x) and "(x). If M is such a Wick monomial, we define
by gh±(M) the degree in ũ (resp. in u). The ghost number is, by definition, the expression

gh(M) ≡ gh+(M)− gh−(M) (2.3.1)
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i.e. we conserve the same expression as in the massless case. The BRST operator also has the
same expression; it is given by

dQM ≡: QM : −(−1)gh(M) : MQ : (2.3.2)

on monomialsM and can be extended by linearity to the whole W .
Most of the formulae from [16] stay true:

d2
Q = 0 (2.3.3)

dQu = 0 dQũ = −i(∂µAµ +m")

dQAµ = i∂µu dQ" = imu
(2.3.4)

dQ(MN) = (dQM)N + (−1)gh(M)M(dQN) ∀M,N ∈W. (2.3.5)

The class of all observables on the factor space emerges (see theorem 2.12): an operator
O : Hgh → Hgh induces a well defined operator [O] on the factor space Ker(Q)/Im (Q) � Fm
if and only if it verifies

dQO|Ker(Q) = 0. (2.3.6)

Not all operators verifying the condition (2.3.6) are interesting. In fact, the operators of
the type dQO induce a null operator on the factor space; explicitly, we have

[dQO] = 0. (2.3.7)

Moreover, in this case, the following formula is true for the matrix elements of the
factorized operator [O]:

([*], [O]["]) = (*,O"). (2.3.8)

If the interaction Lagrangian is a Wick monomial T1 ∈ W with gh(T1) "= 0 then the
S-matrix is trivial.

The analysis of the possible interactions between the bosonic spin-1 field and ‘matter’
follows the usual lines (see [16]). Let Hmatter be the corresponding Hilbert space of the matter
fields. It is elementary to see that we can realize the total Hilbert space Htotal ≡ Fm⊗Hmatter as
the factor space Ker(Q)/Im (Q) where the superchargeQ is defined on H̃gh ≡ Hgh ⊗Hmatter

by the obvious substitutionQ→ Q⊗ 1.
We define on H̃gh the interaction Lagrangian of the same form (2.1.27) where the current

jµ(x) is a Wick polynomial and it is conserved.

3. Massive Yang–Mills fields

3.1. The general setting

As in [16], we first define in an unambiguous way what we mean by Yang–Mills fields. The
main modification is that now all the fields will carry an additional index a = 1, . . . , r and this
can be realized with an appropriate modification of the Hilbert spaces (auxiliary or physical).
So we have the fields Aaµ, ua , ũa , "a a = 1, . . . , r given by the following expressions:

Aaµ(x) ≡ 1

(2π)3/2

∫
X+
ma

dα+
ma
(p)[e−ip·xAaµ(p) + eip·xA†

aµ(p)] (3.1.1)

ua(x) ≡ 1

(2π)3/2

∫
X+
ma

dα+
ma
(q)[e−iq·xba(q) + eiq·xc†

a(q)] (3.1.2)

ũa(x) ≡ 1

(2π)3/2

∫
X+
ma

dα+
ma
(q)[−e−iq·xca(q) + eiq·xb†

a(q)] (3.1.3)
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and

"a(x) ≡ 1

(2π)3/2

∫
X+
ma

dα+
ma
(q)[e−iq·xaa(q) + eiq·xa†

a(q)]. (3.1.4)

As in [16], this amounts to considering that the one-particle subspace is a direct sum of r
copies of elementary heavy bosons of masses ma , a = 1, . . . , r and spin-1.

These fields verify the following equations of motion:

(� +m2
a)ua(x) = 0 (� +m2

a)ũa(x) = 0
(� +m2

a)"a(x) = 0 a = 1, . . . , r.
(3.1.5)

The canonical (anti)commutation relations are

[Aaµ(x), Abν(y)] = −δabgµνDma (x − y)× 1

{ua(x), ũb(y)} = δabDma (x − y)× 1

["a(x),"b(y)] = δabDma (x − y)× 1

(3.1.6)

and all other (anti)commutators are null. The supercharge is given by (see (2.2.13))

Q ≡
r∑
a=1

∫
X+
ma

dα+
ma
(q)[kµ(Aaµ(k)c

∗
a(k) + A†

aµ(k)ba(k)) + ima(aa(k)c
†
a(k)− a∗a (k)ba(k))]

(3.1.7)

and verifies all the expected properties.
The Krein operator has an expression similar to (2.2.23) and can be used to construct a

sesquilinear form as in (2.2.28). Then relations of the type (2.2.31) are still true:

Aaµ(x)
† = Aaµ(x) ua(x)

† = ua(x)
ũa(x)

† = −ũa(x) "a(x)
† = "a(x). (3.1.8)

As a consequence, proposition 2.11 and the main theorem 2.12 stay true.
The ghost degree is defined in an obvious way and the expression for the BRST

operator (2.3.2) is the same in this more general framework and the corresponding properties
are easy to obtain. In particular we have (see (2.3.4))

dQua = 0 dQũa = −i(∂µA
µ
a +ma"a)

dQA
µ
a = i∂µua dQ"a = imaua ∀a = 1, . . . , r.

(3.1.9)

We close this section with a general remark. If we take into account the last observation
from the preceding subsection, it appears that it is possible to make some of the masses null in
the formalism presented above. In this case the corresponding scalar ghosts can be considered
as physical fields and they will be called Higgs fields.

Moreover, we do not have to assume that they are massless, i.e. if some boson fieldAµa has
zero massma = 0, we can suppose that the corresponding Higgs field"a has a non-zero mass:
mHa . Of course, if the mass of the vector fieldAµa is non-zeroma "= 0, then we havemHa = ma .
It is extremely convenient to define the expression m∗a to be equal to ma if ma "= 0 and to mHa
if ma = 0. Then in the last relation (3.1.6) one must make ma → m∗a . Moreover, this process
of attributing a non-zero mass to the scalar partners of the zero-mass vector fields should not
influence the BRST transformation formula (3.1.9); that is, this formula remains unchanged.
We raise this comment to the status of a postulate, as at the end of the preceding subsection, and
we make the following comments. Suppose that we have s zero-mass spin-1 bosons and r − s
non-null spin-1 bosons in our theory; here s � r is arbitrary. The consistency of the formalism
requires that the scalar partners of every one of the non-null spin-1 bosons should be a fictitious
particle—a ghost—with exactly the same mass. On the contrary, the scalar partners of the s
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zero-mass spin-1 bosons can be taken as physical particles of arbitrary mass. This postulate
is in agreement with the case of the standard model, where we have exactly one zero-mass
boson—the photon—and exactly one physical scalar partner—the Higgs particle. Moreover,
this postulate does not bring mathematical inconsistencies. However, we should mention that
this postulate has its limitations: for instance it is possible that in the case when all bosons are
massive there are no solutions in this framework. In other words, models like the Higgs–Kibble
model (see [25]) are not covered by this postulate. Recently [27], Professor Scharf noticed
that one can consider a consistent theory with t > s physical scalars and in this framework
Higgs–Kibble-type models can be described, although their physical relevance is not as clear
at the moment (see also [12]).

We will construct a perturbation theory á la Epstein–Glaser for the free fields Aµa , ua ,
ũa and "a , a = 1, . . . , r in the auxiliary Hilbert space Hgh,r

YM imposing the usual axioms of
causality, unitarity and relativistic invariance. Moreover, we want the result to factorize to the
physical Hilbert space in the adiabatic limit. This amounts to

lim
ε↘0

dQ

∫
(R4)×n

dx1 . . . dxngε(x1) . . . gε(xn)Tn(x1, . . . , xn)

∣∣∣∣
Ker(Q)

= 0 ∀n � 1. (3.1.10)

If this condition is fulfilled, then the chronological and the antichronological products do
factorize to the physical Hilbert space and they give a perturbation theory verifying causality,
unitarity and relativistic invariance.

We have to make a rather delicate comment on this point. One can argue that there are
reasons to believe that the infrared (or adiabatic) limit does not exist, so the preceding relation
does not have a rigorous status. Moreover, in the adiabatic limit, tri-linear Wick monomials are
zero and this affects the argument of the next theorem. This seems to jeopardize the very nice
physical interpretation of this relation, namely as a consistency condition (the factorization to
the physical space of the S-matrix), which avoids the necessity to consider gauge invariance
as a separate postulate. This problem is avoided by the Zürich group as follows [7–10]. One
admits instead of (3.1.10) an ‘infinitesimal’ version, namely

dQTn(x1, . . . , xn) = i
n∑
l=1

∂

∂x
µ

l

T
µ

n/l(x1, . . . , xn) (3.1.11)

whereT µn/l(x1, . . . , xn) are some auxilliary chronological products which should be determined
recursively, together with the standard chronological products. This implies that, instead
of (3.1.10), we have

dQ

∫
(R4)×n

dx1 . . . dxngε(x1) . . . gε(xn)Tn(x1, . . . , xn)

∣∣∣∣
Ker(Q)

= O(ε) ∀n � 1 (3.1.12)

i.e. the factorization is valid only up to terms of order ε.
One should not touch the adiabatic limit, i.e. one should construct the matrix S(g) for

g "≡ 1. We should mention here that the basis for this new postulate is in fact that the
relation (3.1.10) is considered as a heuristic idea. So the two relations are rather closely
related and there is no severe opposition between them. But in this way, one will construct an
object S(g) which does not factorize to the physical space Ker(Q)/Im (Q), as can easily be
seen. This raises doubts about its physical interpretation.

Another way out would be to restrict the physical space Fm even further, that is to consider
that only some of the states of this space are physically accessible, for instance only those states
containing ‘soft photons’, as in the usual treatment of the infrared divergences. Then one would
have to modify the factorization condition (3.1.10) (replacing Ker(Q) by a smaller subspace)
and check that this does not invalidate some of the arguments from the next subsection, for
example the linear independence arguments.
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So, an honest point of view is the following one: the adiabatic problem is still open and
it is presumably the main obstacle left for the construction of a complete rigorous version of
the standard model. We conjecture that a nice ‘cure’ to this problem can be found and, in that
case, we will be able to accept the consistency condition (3.1.10) as a rigorous mathematical
fact. In this case gauge invariance will not be an independent postulate, as we advocate here.
Until then, if we want to be completely rigorous, we are forced to replace (3.1.10) by (3.1.11)
and deal afterwards with the adiabatic limit in the usual and rather unsatisfactory way.

3.2. The derivation of the Yang–Mills Lagrangian; first-order gauge invariance

In this subsection we completely exploit the condition of gauge invariance in the first-order
perturbation theory, obtaining the generic form of the Yang–Mills interaction of spin-1 bosons.
We assume the summation convention of the dummy indices a, b, . . . .

Theorem 3.1. Let us consider the operator

T1(g) =
∫

R4
dx g(x)T1(x) (3.2.1)

defined on Hgh,r
YM with T1, a Lorentz-invariant Wick polynomial in Aµ, u, ũ and " verifying

also ω(T1) � 4. If T1(g) induces a well defined non-trivial S-matrix, in the adiabatic limit,
then it necessarily has the following form:

T1(g) =
∫

R4
dx g(x)[T11(x) + T12(x) + T13(x) + T14(x) + T15(x) + T16(x)] (3.2.2)

where we have introduced the following notations:

T11(x) ≡ fabc[: Aaµ(x)Abν(x)∂νAµc (x) : − : Aµa (x)ub(x)∂µũc(x) :] (3.2.3)

T12(x) ≡ f ′abc[: "a(x)∂µ"b(x)Aµc (x) : −mb : "a(x)Abµ(x)A
µ
c (x) :

−mb : "a(x)ũb(x)uc(x) :] (3.2.4)

T13(x) ≡ f ′′abc : "a(x)"b(x)"c(x) : (3.2.5)

T14(x) ≡ gabcd : "a(x)"b(x)"c(x)"d(x) : (3.2.6)

T15 ≡ hab[: Aaµ(x)Aµb (x) : −2 : ũa(x)ub(x) :] T16(x) ≡ h′ab : "a(x)"b(x) : . (3.2.7)

Here the various constants from the preceding expression are constrained by the following
conditions:

• the expressions fabc are completely antisymmetric

fabc = −fbac = −facb (3.2.8)

and verify

(ma −mb)fabc = 0 iff mc = 0 ∀a, b = 1, . . . , r; (3.2.9)

• the expressions f ′abc are antisymmetric in the indices a and b:

f ′abc = −f ′bac (3.2.10)

and verify the relation

(mHa −mHb )f ′abc = 0 iff ma = mb = mc = 0 ∀a, b = 1, . . . , r (3.2.11)

and are connected to fabc by

fabcmc = f ′cabma − f ′cbamb ∀a, b, c = 1, . . . , r; (3.2.12)



8458 D R Grigore

• the expressions f ′′abc are completely symmetric in all indices and remain undetermined for
ma = mb = mc = 0; for the opposite case they are given by

f ′′abc =
1

6mc
f ′abc[(m

∗
a)

2 − (m∗b)2 −m2
a +m2

b]

iff mc "= 0 a, b = 1, . . . , r;
(3.2.13)

• the expressions gabcd are non-zero if and only if ma = mb = mc = md = 0 and they are
completely symmetric;

• the expressions hab are symmetric

hab = hba (3.2.14)

and verify the relation

(ma −mb)hab = 0 ∀a, b = 1, . . . , r; (3.2.15)

• the constants h′ab are undetermined for ma = mb = 0 and in the opposite case are given
by

h′ab =
ma

2mb
hab iff mb "= 0 ∀a = 1, . . . , r. (3.2.16)

(We note that it is implicit in relations like (3.2.9), (3.2.11), etc that the summation
convention over the dummy indices does not apply.)

Proof. (i) We follow closely the line of argument of theorem 4.1 from [16]. If we take
into account Lorentz invariance, the power counting condition from the statement and the
restriction of non-triviality gh(T1) = 0, the list of linearly independent Wick monomials
from [16] (formula 4.2.4 from section 4.2) is enlarged by new possibilities containing, of
course, the scalar ghosts

• of degree 2:

T (1)
′ = h(1)ab : Aaµ(x)A

µ

b (x) :

T (2)
′ = h(2)ab : ũa(x)ub(x) :

T (3)
′ = h(3)ab : "a(x)"b(x) :

(3.2.17)

• of degree 3:

T (1)
′′ = h(1)abc : "a(x)Abµ(x)A

µ
c (x) :

T (2)
′′ = h(2)abc : "a(x)ũb(x)uc(x) :

T (3)
′′ = h(3)abc : "a(x)"b(x)"c(x) : (3.2.18)

T (4)
′′ = h(4)ab : "a(x)∂µA

µ

b (x) :

T (5)
′′ = h(5)ab : ∂µ"a(x)A

µ

b (x) :
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• of degree 4:

T (1) = f (1)abc : Aaµ(x)Abν(x)∂
νAµc (x) :

T (2) = f (2)abc : Aµa (x)ub(x)∂µũc(x) :

T (3) = f (3)abc : Aµa (x)∂µub(x)ũc(x) :

T (4) = f (4)abc : ∂µA
µ
a (x)ub(x)ũc(x) :

T (5) = f (5)abc : Aaµ(x)A
µ

b (x)∂νA
ν
c(x) :

T (6) = g(1)abcd : Aaµ(x)A
µ

b (x)Acν(x)A
ν
d(x) :

T (7) = g(2)abcd : Aaµ(x)A
µ

b (x)uc(x)ũd(x) :

T (8) = g(3)abcd : ua(x)ub(x)ũc(x)ũd(x) :

T (9) = g(4)abcdεµνρσ : Aµa (x)A
ν
b(x)A

ρ
c (x)A

σ
d (x) :

T (10) = g(1)ab : ∂µAaν(x)∂
µAνb(x) :

T (11) = g(2)ab : ∂µA
µ
a (x)∂νA

ν
b(x) :

T (12) = g(3)ab : ∂µAaν(x)∂
νA

µ

b (x) :

T (13) = g(4)ab : Aµa (x)∂µ∂νA
ν
b(x) :

T (14) = g(5)ab εµνρσ : Fµνa (x)F
ρσ

b (x) :

T (15) = g(6)ab : ∂µua(x)∂
µũb(x) :

T (16) = f (6)abc : "a(x)"b(x)∂µA
µ
c (x) :

T (17) = f (7)abc : "a(x)∂µ"b(x)A
µ
c (x) :

T (18) = g(5)abcd : "a(x)"b(x)Acµ(x)A
µ

d (x) :

T (19) = g(6)abcd : "a(x)"b(x)ũc(x)ud(x) :

T (20) = g(7)abcd : "a(x)"b(x)"c(x)"d(x) :

T (21) = h(5)ab : ∂µ"a(x)∂
µ"b(x) : .

(3.2.19)

Without losing generality we can impose the following symmetry restrictions on the
constants from the preceding list:

h
(1)
ab = h(1)ba g

(1)
abcd = g(1)bacd = g(1)abdc = g(1)cdab g

(2)
abcd = g(2)bacd

h
(3)
ab = h(3)ba h

(5)
ab = h(5)ba h

(1)
abc = h(1)acb

g
(3)
abcd = −g(3)bacd = −g(3)abdc g

(i)
ab = g(i)ba i = 1, 2, 3, 5

g
(5)
abcd = g(5)bacd = g(5)abdc g

(6)
abcd = g(6)bacd

(3.2.20)

and one can suppose that g(4)abcd (resp. g(7)abcd ) are completely antisymmetric (resp. symmetric)
in all indices.

(ii) By integration over x some of the linear independence is lost in the adiabatic limit.
(In the language of axiom (3.1.11), some of the terms can be grouped in total divergences.)
Namely, all the conclusions from [16] stay true and we have in the end:

• one can eliminate T (3) by redefining the constants f (2)abc and f (4)abc;
• one can eliminate T (5) by redefining the constants f (1)abc;
• one can eliminate T (12) and T (13) by redefining the constants g(2)ab ;
• one can eliminate T (10) and T (15) using the equation of motion (2.1.20) and (2.2.11);
• T (14) is null in the adiabatic limit;
• one can eliminate T (5)

′′
by redefining the constants h(4)ab ;

• one can choose the constants f (7)abc such that they verify

f
(7)
abc = −f (7)bac (3.2.21)

if one modifies f (6)abc appropriately;
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• one can eliminate T (21) by redefining the constants h(3)ab .

(iii) Some of the remaining expressions are of the form dQO so they do not count. Namely:

• we have

dQ : (∂µA
µ
a +ma"a)ũb :=: (∂µA

µ
a +ma"a)(∂µA

µ

b +mb"b) :

so we can give up the expressions T (11) if we modify appropriately the expressions h(3)ab
and f (6)abc conveniently; afterwards one can trade off f (6)abc modifying f (7)abc by integration by
parts as explained above;
• we have

dQ : ũa"b := −i : (∂µA
µ
a +ma"a)"b : +imb : ũaub :

so we can eliminate the expression T (4)
′′

if we redefine the expressions h(3)ab and h(2)ab ;
• if the constants gabc are chosen antisymmetric in the indices a and c, then we have

dQgabc : ũaubũc := 2igabc : (∂µA
µ
a +ma"a)ubũc :

so, it follows that if we modify conveniently the constants h(2)abc we can impose

f
(4)
abc = f (4)cba; (3.2.22)

• we have

dQ : "a"bũc := ima : ua"bũc : +imb : "aubũc : − : "a"b(∂µA
µ
c +mc"c) :

so we can give up the term T (16) if we modify conveniently the constants h(2)abc and h(3)abc.

(iv) As a conclusion, we can keep in T1 only the expressions T (1)
′ − T (3)′ , T (1)′′ − T (3)′′ ,

T (1), T (2), T (4), T (6) − T (9) and T (17) − T (20) with the appropriate symmetry properties.
We compute now the expression dQT1. The expression (4.2.7) from [16] receives new

contributions:

dQT1 = dQT
(0)

1 − ih(2)ab ma : "aub : +if (2)abcmc : Aµa ub∂µ"c : −if (4)abcmc : ∂µA
µ

b ub"c :

−ig(2)abcdmd : AaµA
µ

b uc"d : −2ig(3)abcdmd : uaubũc"d :

+if (1)abcm
2
c : AaµubA

µ
c :

−if (4)abcm
2
a : uaubũc : +2ih(3)ab ma : ua"b :

+if (7)abc[ma : ua∂µ"bA
µ
c : +mb : "a∂µubA

µ
c : + : "a∂

µ"b∂µuc :]

+ih(1)abc[ma : uaAbµA
µ
c : +2 : "aA

µ

b ∂µuc :]

+ih(2)abc[ma : uaũbuc : − : "a(∂µA
µ

b +mb"b)uc :]

+3ih(3)abcma : ua"b"c : +2ig(5)abcd [ma : ua"bAcµA
µ

d : + : "a"bA
µ
c ∂µud :]

+ig(6)abcd [2ma : ua"bũcud : − : "a"b(∂µA
µ
c +mc"c)ud :]

+4ig(7)abcdma : ua"b"c"d : . (3.2.23)

Here

dQT
(0)

1 = i∂µ[2h(1)ab : Aµa ub : +(f (1)abc − f (1)cba) : uaAbν∂
νAµc : +f (1)bac : uaAbν∂

µAνc :

+f (1)bca : ∂νuaA
ν
bA

µ
c : −f (1)cba : ua∂

νAbνAcν :]

−i(2h(1)ab + h(2)ab ) : ∂µA
µ
a ub : +i(f (1)cba − f (1)abc) : ua∂µAbν∂

νAµc :

+i(f (1)abc − f (1)bac − f (1)cba + f (2)cba) : ∂µ∂νA
µ
a A

ν
buc :

+i(f (1)abc + f (4)acb) : ∂µA
µ
a ∂νA

ν
buc :
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−if (1)acb : ∂νAaµ∂
νA

µ

b uc : +if (2)abc : ∂µuaub∂µũc :

+4ig(1)abcd : ∂µuaA
µ

b AcνA
ν
d :

+ig(2)abcd(2 : ∂µuaA
µ

b ucũd : + : AaµA
µ

b uc∂ρA
ρ

d :)

−2ig(3)abcd : uaub∂µA
µ
c ũd : −4ig(4)abcdεµνρσ : ∂µuaA

ν
bA

ρ
cA

σ
d : (3.2.24)

is the expression (4.2.7) from [16], i.e. the expression dQT1 for zero-mass bosons and
without scalar ghosts, the next terms having various origins: the modification of the BRST
transformation (3.1.9), the modification of the equation of motion (3.1.5) and the new terms
T (3)

′
, T (1)

′′
–T (3)

′′
and T (17)–T (20) considered in the expression of T1. We impose the condition

of factorization to the physical space (3.1.12) for the case n = 1:∫
R4

dx gε(x) dQT1 (x)

∣∣∣∣
Ker(Q)

= O(ε). (3.2.25)

It is not very hard to see that all the conclusions from [16] remain true, i.e. the constants
fabc ≡ f (1)abc are completely antisymmetric:

f
(2)
abc = −fabc f

(4)
abc = 0

g
(i)
abcd = 0 i = 1, 2, 3, 4 2h(1)ab + h(2)ab = 0.

(3.2.26)

Moreover, we get

2h(1)abcma = fbac(m2
b −m2

c) ∀a, b, c = 1, . . . , r (3.2.27)

habma = 2h(3)ab mb ∀a, b = 1, . . . , r (3.2.28)

g
(i)
abcd = 0 i = 5, 6 (3.2.29)

and the expressions g(7)abcd can be non-zero iff ma = mb = mc = md = 0.
It remains to perform some integrations by parts into the remaining expression and to

obtain

dQT1 = i∂µ[· · · + (2h(1)cab + f (7)cbamb) : Aµa ub"c : +f (7)abc : "a∂
µ"buc :]

−i(fabcm
2
c + h(2)acbma) : uaubũc :

+i(−fabcmc + 2f (7)bcamb − 2h(1)cab) : Aµa ub∂µ"c :

−i(2h(1)acb + f (7)abcmb + h(2)acb) : "aub∂µA
µ
c :

−i[h(2)abcmb − 3h(3)abcmc − f (7)abc(mHb )2] : "a"buc : (3.2.30)

where by · · ·we mean the expression obtained if all the masses are zero and there are no scalar
ghosts (see (3.2.24) above). The divergence gives a contribution of order ε in (3.2.25) and the
other terms can be computed on vectors from H′. In this way we see that we get independent
conditions from each term in the preceding formula, i.e.

2fabcm
2
c = h(2)bcamb − h(2)acbma ∀a, b, c = 1, . . . , r (3.2.31)

2h(1)cab = −fabcmc + 2f (7)bcamb ∀a, b, c = 1, . . . , r (3.2.32)

h
(2)
abc = −2h(1)abc − f (7)acbmb ∀a, b, c = 1, . . . , r (3.2.33)

and

6h(3)abcmc = f (7)abc[(mHa )2 − (mHb )2] + h(2)bacma + h(2)abcmb ∀a, b, c = 1, . . . , r. (3.2.34)

We exploit completely the system of equations (3.2.27), (3.2.31)–(3.2.34). It is obvious
that in order to obtain the statement of the theorem we should redefine f (7)abc → f ′abc,
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h
(3)
abc → f ′′abc and h(3)ab → h′ab. If we take the symmetric (resp. antisymmetric) part in a

and b of relation (3.2.32) we get an explicit expression for h(1)cab:

h
(1)
cab = 1

2 (f
′
bcamb + f ′acbma) ∀a, b, c = 1, . . . , r (3.2.35)

and respectively the consistency relation (3.2.12). One substitutes this result into
equations (3.2.27) (resp. (3.2.33)) and gets an identity (resp. an explicit expression for h(2)abc)

h
(2)
abc = f ′abcmb ∀a, b, c = 1, . . . , r. (3.2.36)

Next, from (3.2.34) for mc = 0 we get the consistency relation (3.2.11) and for mc "= 0
we obtain the expression (3.2.13).

Finally, from (3.2.28) we immediately get the consistency relation (3.2.15) and the explicit
expression (3.2.16). If the expressions for h(1)abc and h(2)abc are substituted into the generic
expression for T1 we get the formula from the statement.

(vi) It remains to prove that the expression from the statement cannot be of the type dQO
and this can be easily done. �

Remark 3.2. It is a remarkable fact that we get in a natural way mass relations of the
type (3.2.9). This relation is non-trivial iff there are simultaneously massive and massless
bosons in the model. In this case, we can reformulate this relation as follows: if fabc "= 0 and
mc = 0 then necessarily we have ma = mb. In particular, this is the cause of the equality of
the masses of the two heavyW bosons in the standard model.

The relation (3.2.12) can be completely exploited.

Corollary 3.3. The following relations are true:

f ′abc =
m2
a +m2

b −m2
c

2mamb
fabc ∀a, b, c = 1, . . . , r s.t. ma "= 0 mb "= 0

(3.2.37)

and

f ′abc = mcgabc ∀a, b, c = 1, . . . , r s.t. ma = 0 mb "= 0. (3.2.38)

Here the constants gabc are constrained only by the symmetry property in the last two
indices

gabc = gacb. (3.2.39)

These two relations are completely equivalent to the relation (3.2.12) so, in particular, the
constants f ′abc remain arbitrary for ma = mb = 0.

Proof. The first relation can be obtained if we multiply (3.2.12) by mc and perform two
cyclic permutations. Combining the three relations in a convenient way one gets (3.2.37). The
relation (3.2.38) follows from (3.2.12) if we consider the case mc = 0. �

Corollary 3.4. In the condition of the preceding theorem, one has

dQT1(x) = i∂µT
µ

1 (x) (3.2.40)

where

T
µ

1 ≡ T µ11 + T µ12 + T µ13 (3.2.41)
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and the expression from this formula is defined as follows:

T
µ

11 ≡ fabc(: uaAbνF νµc : − 1
2 : uaub∂

µũc :) (3.2.42)

T
µ

12 ≡ f ′abc(ma : Aµa"buc : + : "a∂
µ"buc :) (3.2.43)

and

T
µ

13 ≡ 2hab : Aµa ub : . (3.2.44)

Moreover, we have the followoing proposition.

Proposition 3.5. The expression T1 from the preceding theorem verifies the unitarity condition

T1(x)
† = T1(x)

if and only if the constants fabc, f ′abc, f
′′
abc, hab and h′ab have real values.

The proof is very simple and relies on relations (3.1.8). To study the causality axiom in
the first order of the perturbation theory, one has to investigate some causal distributions and
some relations between them. We have the following proposition.

Proposition 3.6. The following distributions are well defined and have causal support:

Dmamb(x) ≡ D(+)ma (x)D(+)mb (x)− (+→−)
Dmamb;µν ≡

[
D(+)ma (x)

∂2

∂xµ∂xν
D(+)mb (x)

− ∂

∂xµ
D(+)ma (x)

∂

∂xν
D(+)mb (x) + (a ↔ b)

]
− (+→−)

Dmamb;µ ≡
∂

∂xµ
D(+)ma (x)D

(+)
mb
(x) + (+→−)

Dmambmc (x) ≡ D(+)ma (x)D(+)mb (x)D(+)mc (x) + (+→−)
Dmamb;mc(x) ≡ [∂µD

(+)
ma
(x)∂µD(+)mb (x)]D

(+)
mc
(x) + (+→−)

Dmambmcmd (x) ≡ D(+)ma (x)D(+)mb (x)D(+)mc (x)D(+)md (x)− (+→−).

(3.2.45)

Moreover, they verify the following relations:

∂

∂xν
Dmamb;µν = (m2

b −m2
a)[Dmamb;µ − (a ↔ b)]

∂

∂xµ
Dmamb;µ = 1

2 (� +m2
b −m2

a)Dmamb .
(3.2.46)

Finally we have the following.

Proposition 3.7. The expression T1 determined in the preceding theorem verifies the causality
condition

[T1(x), T1(y)] = 0 ∀x, y ∈ R
4 s.t. (x − y)2 < 0.

One must determine the commutator appearing in the left-hand side. The computations
are similar to the one from [16] and we do not give them here. We only mention that the
commutator involves the distributions listed in (3.2.45), which have causal support.

We can now give a generic form for the distribution T2. We split causally the commutator
[T1(x), T1(y)] according to the prescription of Epstein and Glaser and include the most general
finite arbitrariness of the decomposition taking into account general considerations explained
in [16]. First we note that we have the following.
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Proposition 3.8. The distributions listed in (3.2.45) admit causal splittings which preserve
Lorentz covariance. Moreover, the splitting can be chosen such that it will preserve the
properties (3.2.46), i.e. we can arrange it such that we have

∂

∂xν
D

ret(adv)
mamb;µν = (m2

b −m2
a)[D

ret(adv)
mamb;µ − (a ↔ b)]

∂

∂xµ
D

ret(adv)
mamb;µ =

1

2
(� +m2

b −m2
a)D

ret(adv)
mamb

.
(3.2.47)

So we can provide now the generic expression of the distribution T2. The expression
is extremely long, but we provide it because it provides the easiest way to compute explicit
effects in a concrete theory, like the standard model. (For this, one should include, of course,
the lepton fields.) We will denote by DFm(x), D

F
mamb

(x), DFmamb;µν , D
F
mamb;µ, DFmambmc (x) and

DFmamb;mc(x) the corresponding Feynman propagators and observe that they verify equations
of the same type as those from the preceding proposition. We have the following proposition,
obtained by long and tedious computations.

Proposition 3.9. The generic form of the distribution T2 is a sum between the non-contracted
term : T1(x)T1(y) :, the expressions

T 0
2 (x, y) = −fcabfcdeDFmc(x − y){: Aaν(x)F νµb (x)Aρd (y)Feρµ(y) :

+ : ua(x)∂µũb(x)ud(y)∂
µũe(y) : −[Aaν(x)F

νµ

b (x)ud(y)∂µũe(y) : +(x ↔ y)]}
+ 1

2fabcfdbcD
F
mbmc

(x − y) : Fνµa (x)Fdνµ(y) :

+fcabfcde
∂

∂xρ
DFmc(x − y){[: Aaν(x)F νµb (x)Adµ(y)Aρe (y) :

+ : Aµa (x)A
ρ

b (x)ud(y)∂µũe(y) :

+ : Aµa (x)∂µũb(x)A
ρ

d (y)ue(y) :]− (x ↔ y)}

+fcabfcde
∂2

∂xµ∂xν
DFmc(x − y) : Aaρ(x)A

µ

b (x)A
ρ

d (y)A
ν
e(y) :

+fabcfdbc[m
2
bgµνD

F
mbmc

(x − y)− 2DFmbmc;µν(x − y)] : Aµa (x)A
ν
d(y) :

+fabcfdbcD
F
mb,mc;ρ(x − y){[: Aaµ(x)Fµρd (y) : + : ua(x)∂

ρũd(y) :]−(x ↔ y)}
−fabcfabc( 1

3�− 2m2
a)D

F
mambmc

(x − y)1
+fcabf

′
decD

F
mc
(x − y){[: Aaµ(x)Fµνb (x)"d(y)∂ν"e(y) :

+ : ua(x)∂µũb(x)"d(y)∂
µ"e(y) :] + (x ↔ y)}

+fcabf
′
dec

∂

∂xρ
DFmc(x − y)[: Aµa (x)Aρb (x)"d(y)∂µ"e(y) : −(x ↔ y)]

−2fabch
(1)
decD

F
mc
(x − y){[: Aaµ(x)Fµνb (x)"d(y)Aeν(y) :

− : ua(x)∂µũb(x)"d(y)A
µ
e (y) :] + (x ↔ y)}

−2fabch
(1)
dec

∂

∂xρ
DFmc(x − y)[: Aaµ(x)Aρb (x)"d(y)Aµe (y) : −(x ↔ y)]

−fcabh(2)dceDFmc(x − y)[: Aµa (x)∂µũb(x)"d(y)ue(y) : +(x ↔ y)]

−fcabh(2)dec
∂

∂xρ
DFmc(x − y)[: Aρa(x)ub(x)"d(y)ũe(y) : −(x ↔ y)]

−fcabh(2)dcbDFmbmc;µ(x − y)[: Aµa (x)"d(y) : −(x ↔ y)]

+f ′cabf
′
cdeD

F
m∗c
(x − y) : ∂µ"a(x)A

µ

b (x)∂ν"d(y)A
ν
e(y) :
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+f ′cabf
′
cde

[
∂

∂xρ
DFm∗c

(x − y) : ∂µ"a(x)A
µ

b (x)"d(y)A
ρ
e (y) :

− ∂

∂xµ
DFm∗c

(x − y) : "a(x)A
µ

b (x)∂ρ"d(y)A
ρ
e (y) :

]

−f ′cabf ′cde
∂

∂xµ∂xν
DFm∗c

(x − y) : "a(x)A
µ

b (x)"d(y)A
ν
e(y) :

−f ′abcf ′decDFmc(x − y) : "a(x)∂µ"b(x)"d(y)∂
µ"e(y) :

−f ′abcf ′abdDFm∗am∗b;µν(x − y) : Aµc (x)A
ν
d(x) :

−f ′abcf ′adcDFm∗amc (x − y) : ∂µ"b(x)∂
µ"d(x) :

−f ′abcf ′adcDFmcm∗a;µ(x − y)[: ∂µ"b(x)"d(x) : −(x ↔ y)]

−f ′abcf ′adc(m∗a)2DFm∗amc (x − y) : "b(x)"d(x) :

−f ′abcf ′abc[DFm∗am∗b;mc(x − y) + (m∗a)
2DFm∗am∗bmc

(x − y)]1
−2f ′abch

(1)
decD

F
mc
(x − y)[: "a(x)∂µ"b(x)"d(y)Aµe (y) : +(x ↔ y)]

+f ′cabh
(1)
cdeD

F
m∗c
(x − y)[: ∂µ"a(x)Aµb (x)Adρ(y)Aρe (y) : +(x ↔ y)]

−f ′cabh(1)cde
∂

∂xµ
DFm∗c

(x − y)[: "a(x)Aµb (x)Adρ(y)Aρe (y) : −(x ↔ y)]

+2f ′abch
(1)
bcdD

F
m∗bmc

(x − y)[: ∂µ"a(x)Aµd (y) : +(x ↔ y)]

−2f ′abch
(1)
bcdD

F
mcm

∗
b;µ(x − y)[: "a(x)A

µ

d (y) : −(x ↔ y)]

+f ′cabh
(2)
cdeD

F
m∗c
(x − y)[: ∂µ"a(x)Aµb (x)ũd(y)ue(y) : +(x ↔ y)]

−f ′cabh(2)cde
∂

∂xρ
DFm∗c

(x − y)[: "a(x)Aρb (x)ũd(y)ue(y) : −(x ↔ y)]

+3f ′cabf
"
cdeD

F
m∗c
(x − y)[: ∂µ"a(x)Aµb (x)"d(y)"e(y) : +(x ↔ y)]

−3f ′cabf
"
cde

∂

∂xρ
DFm∗c

(x − y)[: "a(x)Aρb (x)"d(y)"e(y) : −(x ↔ y)]

+6f ′bcaf
"
bcdD

F
m∗cm

∗
b;ρ(x − y)[: A

ρ
a(x)"d(y) : −(x ↔ y)]

+4f ′cabgcdefD
F
m∗c
(x − y)[: ∂µ"a(x)Aµb (x)"d(y)"e(y)"f (y) : +(x ↔ y)]

−4f ′cabgcdef
∂

∂xρ
DFm∗c

(x − y)[: "a(x)Aρb (x)"d(y)"e(y)"f (y) : −(x ↔ y)]

−12f ′bcagbcdeD
F
m∗bm∗c ;ρ(x − y)[: A

ρ
a(x)"d(y)"e(y) : −(x ↔ y)]

+h(1)cabh
(1)
cdeD

F
m∗c
(x − y) : Aaµ(x)A

µ

b (x)Adν(y)A
ν
e(y) :

−4h(1)cabh
(1)
dbeD

F
mb
(x − y) : "a(x)A

µ
c (x)"d(y)Aeµ(y) :

−4h(1)abch
(1)
abdD

F
m∗amb

(x − y) : Aµc (x)Adµ(y) : +2h(1)abch
(1)
dbcD

F
mbmc

(x − y)
: "a(x)"d(y) + 2h(1)abch

(1)
abcD

F
m∗ambmc

(x − y)1
+h(1)cabh

(2)
cdeD

F
m∗c
(x − y)[: Aaµ(x)Aµb (x)ũd(y)ue(y) : +(x ↔ y)]

+3h(1)cabh
(3)
cdeD

F
m∗c
(x − y)[: Aaµ(x)Aµb (x)"d(y)"e(y) : +(x ↔ y)]

+4h(1)cabgcdefD
F
m∗c
(x − y)[: Aaµ(x)Aµb (x)"d(y)"e(y)"f (y) : +(x ↔ y)]

+h(2)abch
(2)
adeD

F
m∗a
(x − y) : ũb(x)uc(x)ũd(y)ue(y) :
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+h(2)abch
(2)
debD

F
mb
(x − y)[: "a(x)uc(x)"d(y)ũe(y) : −(x ↔ y)]

+h(2)abch
(2)
aebD

F
m∗amb

(x − y)[: ũe(x)uc(y) : +(x ↔ y)]

−h(2)abch(2)dbcDFmbmc (x − y) : "a(x)"d(y) : −h(2)abch(2)acbDFm∗ambmc (x − y)1
+3h(2)cabf

"
cdeD

F
m∗c
(x − y)[: ũa(x)ub(x)"d(y)"e(y) : +(x ↔ y)]

+4h(2)cabgcdefD
F
m∗c
(x − y)[: ũa(x)ub(x)"d(y)"e(y)"f (y) : +(x ↔ y)]

+9f "cabf
"
cdeD

F
m∗c
(x − y) : "a(x)"b(x)"d(y)"e(y) :

+18f "
abcf

"
abdD

F
m∗am

∗
b
(x − y) : "c(x)"d(y) : +18f "

abcf
"
abcD

F
m∗am

∗
bm
∗
c
(x − y)1

+12f "cabgcdefD
F
m∗c
(x − y)[: "a(x)"b(x)"d(y)"e(y)"f (y) : +(x ↔ y)]

+18f "
abcgbcdeD

F
m∗bm∗c

(x − y)[: "a(x)"d(y)"e(y) : +(x ↔ y)]

+24f "
bcdgabcdD

F
m∗bm∗cm

∗
d
(x − y)["a(x) + (x ↔ y)]

+16gabcdgdef hD
F
m∗d
(x − y) : "a(x)"b(x)"c(x)"e(y)"f (y)"h(y) :

+144gabcdgcdefD
F
m∗cm

∗
d
(x − y) : "a(x)"b(x)"e(y)"f (y) :

+576gabcdgbcdeD
F
m∗bm∗cm

∗
d
(x − y) : "a(x)"e(y) :

+24gabcdgabcdD
F
m∗am

∗
bm
∗
cm
∗
d
(x − y)1. (3.2.48)

T h2 (x, y) = −2fcabhcdD
F
mc
(x − y){[: Aaν(x)F νµb (x)Adµ(y) : − : ua(x)∂µũb(x)A

µ

d (y) :

− : Aµa (x)∂µũb(y)ud(y) :] + (x ↔ y)]}
−2fcabhcd

∂

∂xρ
DFmc(x − y){[: Aaµ(x)Aρb (x)Aµd (y) : −

: Aρa(x)ub(x)ũd(y) :]− (x ↔ y)]}
−2f ′abchcdD

F
mc
(x − y)[: "a(x)∂µ"b(x)Aµd (y) : +(x ↔ y)]

+2f ′abch
′
cdD

F
m∗c
(x − y)[: ∂µ"a(x)Aµb (x)"d(y) : +(x ↔ y)]

−2f ′cabh
′
cd

∂

∂xρ
DFm∗c

(x − y)[: "a(x)Aρc (x)"d(y) : −(x ↔ y)]

+2f ′bcah
′
bcD

F
m∗cm

∗
b;ρ(x − y)[A

ρ
a(x)− (x ↔ y)]

−4h(1)cabhcdD
F
mc
(x − y)[: "a(x)Aµb (x)Adµ(y) : +(x ↔ y)]

+16h(1)cabhcdD
F
mc
(x − y)"a(x)

+2h(1)cabh
′
cdD

F
m∗c
(x − y)[: Aaµ(x)Aµb (x)"d(y) : +(x ↔ y)]

+2h(2)acbhcdD
F
mc
(x − y)[: "a(x)ub(x)ũd(y) : +(x ↔ y)]

−2h(2)abchcdD
F
mc
(x − y)[: "a(x)ũb(x)ud(y) : +(x ↔ y)]

+4h(2)abchbcD
F
mbmc

(x − y)"a(x)
+2h(2)cabh

′
cdD

F
m∗c
(x − y)[: ũa(x)ub(x)"d(y) : +(x ↔ y)]

+6h(3)cabh
′
cdD

F
m∗c
(x − y)[: "a(x)"b(x)"d(y) : +(x ↔ y)]

+6h(3)abch
′
bcD

F
m∗bm∗c

(x − y)"a(x)
+8gabcdh

′
deD

F
m∗d
(x − y)[: "a(x)"b(x)"c(x)"e(y) : +(x ↔ y)]

+24gabcdh
′
cdD

F
m∗cm

∗
d
(x − y)[: "a(x)"b(x) : +(x ↔ y)]
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−4habhabD
F
mc
(x − y){: Aµb (x)Abµ(y) : −[: ũa(x)ub(y) : +(x ↔ y)]}

+4habhabD
F
mamb

(x − y)1 + 4h′ach
′
bcD

F
m∗c
(x − y) : "a(x)"b(y) :

+4h′abh
′
abD

F
m∗am

∗
b
(x − y)1 (3.2.49)

and a finite renormalization of the type δ(x−y)L(x). The finite normalizationL(x) is Lorentz
invariant and of power �4, i.e. a sum of terms of the type (3.2.17)–(3.2.19).

3.3. Second-order gauge invariance

We are not guaranteed that the generic expression of T2(x, y) from the preceding proposition
leads to a well defined operator on the factor space Hgh,r

YM ; as in [16], one can show that this
can happen if and only if some severe restrictions are placed on the constants appearing in
the expression of the interaction Lagrangian. In [3] it is proved that, in the standard model,
one can choose conveniently the finite normalization L(x) such that gauge invariance is valid
in the second-order perturbation theory (this in turn guarantees that the factorization of the
S-matrix is possible in this order). We detail below this result in a more general context,
when the characteristics of the standard model are not used in the computations, i.e. we do
not take specific expressions for the constants fabc. As in [16] we observe that the generic
expression for the second-order S-matrix obtained in the preceding proposition corresponds
to a ‘canonical’ causal splitting of the commutator D2(x, y); namely, one splits causally
the numerical distributions in the expression of the commutator by making the replacements
Dm→ Dret(adv)

m , ∂µDm→ ∂µD
ret(adv)
m ,Dmamb;µν → D

ret(adv)
mamb;µν , etc. In this way one obtains the

expressions R0
2(x, y) and A0

2(x, y) which will be called the canonical causal splitting. This
splitting leads to the expression T 0

2 (x, y) + T h2 (x, y) from the preceding proposition. Now we
have the following theorem.

Theorem 3.10. The expression T2 appearing in the preceding proposition leads, in the
adiabatic limit, to a well defined operator on Hr

YM if and only if:
(a) the constants fabc verify the Jacobi identities

fabcfdec + fbdcfaec + fdacfbec = 0, (3.3.1)

in particular, there exists a compact Lie group G with fabc as structure constants; moreover
G is of the form G ≡ H1 × · · · ×Hk × U(1)× · · · × U(1) with H1, . . . , Hk compact simple
Lie groups;

(b) the constants f ′abc verify the identity

f ′dcaf
′
ceb − f ′dcbf ′cea = −fabcf ′dec, (3.3.2)

in other words, if we define the r × r (antisymmetric) matrices Ta , a = 1, . . . , r according to

(Ta)bc ≡ −f ′bca ∀a, b, c = 1, . . . , r (3.3.3)

then they are an r-dimensional representation of the Lie algebra Lie(G) determined by the
structure constants fabc;

(c) the constants f ′′abc verify the following identities:

f ′cabf
′′
cde + f ′cdbf

′′
cae + f ′cebf

′′
cda = 0 iff ma = mb = md = me = 0 (3.3.4)

(d) the constants hab verify the identities

fabchcd = 0 (3.3.5)

so they can be non-null only in the Abelian sector (see (a) above);
(e) the constants h′ab verify the identity

f ′dbah
′
cd + f ′dcah

′
bd = 0; (3.3.6)
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(f) the constants gabcd verify the identity

f ′cbagcdef + (b↔ d) + (b↔ e) + (b↔ f ) = 0 (3.3.7)

for ma = mb = md = me = mf = 0.

Proof. (i) We follow the ideas from [7] and [16]. We first have

dQD2(x, y) = i
∂

∂xµ
[T µ1 (x), T1(y)]− (x ↔ y) (3.3.8)

and we must compute the right-hand side. It is elementary to see that the distribution
dQD2(x, y) still has a causal support so it can be split causally:

dQD2(x, y) = dQA2(x, y)− dQR2(x, y). (3.3.9)

If we split causally the right-hand side of the formula (3.3.8) preserving Lorentz covariance
and power counting, we will obviously get valid expressions for the distributions dQA2(x, y)

and dQR2(x, y). If we want to obtain exactly dQA0
2(x, y) and dQR0

2(x, y) we must compute
the commutators in the (3.3.8), next perform the derivatives and finally extract the canonical
causal splitting. Of course, in this way we do not get the most general expression for these
distributions because we have the possibility of finite normalizations. But the arbitrariness
for dQR2(x, y) is exactly the same as the arbitrariness for dQT2(x, y), i.e. it is of the form
δ(x − y)N(x). So, we get the most general expression for the distributions dQA2(x, y) and
dQR2(x, y).

Because we have (3.1.12) for n = 1, we conclude that (3.1.12) for n = 2 is equivalent to∫
R4×R4

dx dy gε(x)gε(y) dQR2(x, y)

∣∣∣∣
Ker(Q)

= O(ε). (3.3.10)

Imposing this condition on the expression determined in the way outlined above will lead
to conditions (a)–(e) from the statement.

(ii) By straightforward computation we obtain the following expression for the first
commutator appearing in (3.3.8):

[T µ1 (x), T1(y)] = ∂

∂xµ
Dmc(x − y)Tc(x, y) +

∂2

∂xµ∂xρ
Dmc(x − y)Tc;ρ(x, y)

+(T → T ′,mc → m∗c ) + · · · . (3.3.11)

The anomalies can be produced only by those terms in T µ1 of the type ∂µA · · ·B, and
this simplifies considerably the computations. We obtain in this way only the terms from
the preceding expression. Therefore we give the explicit expression of the operator-valued
distributions Tc and T ρc :
Tc(x, y) ≡ fcabfcde[: ua(x)Aνb(x)Aρd (y)Feρν(y) : − : ua(x)A

ν
b(x)ud(y)∂νũe(y) :

+ 1
2 : ua(x)ub(x)A

ρ

d (y)∂ρũe(y) :]

+fabcf
′
dec : ua(x)A

ρ

b (x)"d(y)∂ρ"e(y) :

+2fabch
(1)
dec : ua(x)Abρ(x)"d(y)A

ρ
e (y) :

− 1
2fabch

(2)
dec : ua(x)ub(x)"d(y)ũe(y) :

+fcabhcd [2 : ua(x)Abν(x)A
ν
d(y) : + : ua(x)ub(x)ũd(y) :]

T ′c (x, y) ≡ −f ′cabf ′cde : "a(x)ub(x)∂ρ"d(y)A
ρ
e (y) :

−f ′cabh(1)cde : "a(x)ub(x)Adρ(y)A
ρ
e (y) :

−f ′cabh(2)cde : "a(x)ub(x)ũd(y)ue(y) :
−3f ′cabf

"
cde : "a(x)ub(x)"d(y)"e(y) :

−4f ′acbgcdef : "a(x)ub(x)"d(y)"e(y)"f (y) :

−2f ′cabh
′
cd : "a(x)ub(x)"d(y) :

(3.3.12)
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and

T ρc (x, y) ≡ −fcabfcde : ua(x)Abν(x)A
ν
d(y)A

ρ
e (y) :

T
′ρ
c (x, y)− f ′cabf ′cde : "a(x)ub(x)"d(y)A

ρ
e (y) : .

(3.3.13)

(iii) We must split causally the distribution ∂
∂xµ

[T µ1 (x), T1(y)]. It is important that the
causal splitting can be done in such a way that we have the relations from proposition 3.8. One
can obtain in the same way the following expression for the canonical splitting:(

∂

∂xµ
[T µ1 (x), T1(y)]

)ret

= ∂

∂xµ
R̃1,µ(x, y)− iδ(x − y)A(x, y) (3.3.14)

where

R̃
µ

1 (x, y) ≡ Rµ1 (x, y)− iδ(x − y)
r∑
c=1

[
T µc (x, y) + (T µc → T ′µc )

]
(3.3.15)

(with R1,µ(x, y) given by (3.3.11) with Dm→ Dret
m , etc) and the anomaly is given by

A(x, y) ≡
r∑
c=1

[
Tc(x, y)− ∂

∂xρ
T ρc (x, y) + (T → T ′)

]
. (3.3.16)

The factorization condition (3.3.10) can now be written as follows:∫
R4

dx (gε(x))
2[2A(x)− dQL(x)]Ker(Q) = O(ε) (3.3.17)

where L(x) is a finite normalization and A(x) ≡ A(x, x).
After performing the computations and with some rearrangement, the last condition is as

follows:∫
R4

dx gε(x)
2[(2fcaefcdb − fcabfcde) : ua(x)Fbρν(x)A

ν
d(x)A

ρ
e (x) :

−fcabfcbe : ∂ρua(x)Abν(x)A
ρ

d (x)A
ν
e(x) :

+(2fcadfcbe − fcabfcde) : ua(x)ub(x)A
ρ

d (x)∂ρũe(x) :

+2(fabcf
′
dec − 2f ′cdaf

′
ceb) : ua(x)A

ρ

b (x)"d(y)∂ρ"e(y) :

+2(2fabch
(1)
dec − f ′cdah(1)ceb) : ua(x)Abρ(x)"d(y)A

ρ
e (y) :

−(fabch(2)dec − 2f ′cdah
(2)
ceb) : ua(x)ub(x)"d(y)ũe(y) :

−2f ′cabf
′
cde : "a(x)ub(x)"d(y)∂ρA

ρ
e (y) :

−6f ′cabf
′′
cde : "a(x)ub(x)"d(y)"e(y) :

+4f ′cbagcdef : ua(x)"b(x)"d(x)"e(x)"f (x) :

−4fcabhcd : ua(x)Abν(x)A
ν
d(x) : −2fcabhcd : ua(x)ub(x)ũd(x) :

−4f ′cabh
′
cd : "a(x)ub(x)"d(x) : − dQL(x)]|Ker(Q) = O(ε). (3.3.18)

One has to compute the expression dQL(x) taking into account the generic form for
L(x) described in the preceding subsection. One takes into account (3.2.17)–(3.2.19) and
the corresponding expressions from [16]; to avoid confusion we will append a tilde sign to
all coefficients in these expressions. We equate with zero the coefficients of the linearly
independent (integrated) Wick monomials. We now have the following cases:

• We consider the coefficients of the (linearly independent) integrated Wick monomials∫
R4 dx g2

ε : uaubA
ρ

d∂ρũe:
∫

R4 dx g2
ε : ∂ρuaubA

ρ

d ũe:
∫

R4 dx g2
ε : AaµA

µ

b uc∂ρA
ρ

d : and∫
R4 dx g2

ε : uaA
µ

b AdνA
ν
e : and we get, as in [16], that the constants fabc verify the Jacobi
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identity (3.3.1) so we have (a) from the statement. Moreover we obtain the explicit
expression of g̃(1)abde

g̃
(1)
abde =

i

8
(fcadfcbe + fcaefcbd). (3.3.19)

• From the coefficients of the Wick monomials
∫

R4 dx g2
ε : uaubũd :

∫
R4 dx g2

ε : "a∂µA
µ

b ud :∫
R4 dx g2

ε : "a∂
µ"b∂µud :

∫
R4 dx g2

ε : ∂νAaµ∂µAνbud :
∫

R4 dx g2
ε : ua∂µAbν∂

µAνd : and∫
R4 dx g2

ε : ua∂µA
µ

b ∂νA
ν
d : we obtain (3.3.5).

• From the coefficients of the monomials
∫

R4 dx g2
ε : uaA

ρ

b"d∂ρ"e:
∫

R4 dx g2
ε : uaAbρ"dA

ρ
e :∫

R4 dx g2
ε : uaub"dũe:

∫
R4 dx g2

ε : "aub"d"e: and
∫

R4 dx g2
ε : "a"b∂µA

µ

d ue: we obtain
the following system of equations which is harder to analyse than the previous ones:

2(fabcf
′
dec − 2f ′cdaf

′
ceb) + 4ig̃(5)deba = 0 (3.3.20)

[(2fabch
(1)
dec − f ′cdah(1)ceb) + (b↔ e)]− 2ig̃(5)adbema = 0 (3.3.21)

(fabch
(2)
dec − 2f ′cdah

(2)
ceb)− (a ↔ b)] + i[g̃(6)adebma − (a ↔ b)] = 0 (3.3.22)

6f ′cabf
′′
cde − ig̃(6)deab + 4ig̃(7)abdemb + cyclic perm (a, d, e) = 0 (3.3.23)

−(f ′caef ′cbd + f ′cbef
′
cad) + 2ig̃(5)abde + ig̃(6)abde = 0. (3.3.24)

It is very convenient that this system can be solved explicitly. First, we take into account
that the constants g̃(5)deba are symmetric in d and e and also in b and a. So, if we take the
antisymmetric part in d and e of the relation (3.3.20), we get the relation (3.3.2) from the
statement, and from the symmetric part we obtain the explicit expression for g̃(5)deba:

g̃
(5)
deba = −

i

2
(fcdaf

′
ceb + f ′cdbf

′
cea). (3.3.25)

If we substitute this expression into equation (3.3.24) we get

g̃
(6)
abde = 0. (3.3.26)

Then, relation (3.3.22) becomes a consequence of (3.3.2) if we use the explicit
expression (3.2.36) for h(2)abc.
Next, we introduce the expressions (3.3.25) and (3.2.35) of g̃(5)abde and resp. h(1)cab into
equation (3.3.21) and we obtain an identity if we take into account that the constants f ′abc
verify equations (3.2.12) and (3.3.2).
If we now substitute (3.3.26) into equation (3.3.23) we obtain easily the condition (3.3.4)
from the statement; moreover we obtain the explicit expression for g̃(7)abde:

g̃
(7)
abde =

i

2mb
(f ′cabf

′′
cde + cyclic perm a, d, e). (3.3.27)

• If we consider now the coefficient of the Wick monomial
∫

R4 dx g2
ε : ua"b"c: we get

3ih̃(3)abcma + 2(f ′dbah
′
cd + f ′dcah

′
bd) = 0. (3.3.28)

For ma = 0 we obtain condition (3.3.6) from the statement. We also get

h̃
(3)
abc =

2i

3ma
(f ′dbah

(3)
cd + f ′dcah

(3)
bd ) for ma "= 0. (3.3.29)

• Finally, we consider the integrated Wick monomial
∫

R4 dx gabdef : ua"b"d"e"f : where
md = me = mf = 0. In this case we get an expression for g̃(8):

g̃
(8)
abdef ≡ −

i

5ma
(f ′cbagcdef + f ′cdagcbef + f ′ceagcbdf + f ′cf agcbde) (3.3.30)

and obtain (f) from the statement.
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We have obtained all the relations from the statement and it is clear that we have used all
aspects of equation (3.3.18). �

Remark 3.11. The representation Ta exhibited in the statement of the theorem is nothing else
but the representation of the gauge group G into which the Higgs fields live.

Remark 3.12. Much of the effort from the appendix of [3] is nothing more than the painful
verification that the standard model fulfils conditions (3.2.12) and (3.3.2), and that all other
equations are identically verified. The advantage of our approach consists in exhibiting very
clearly where the computational difficulties are hidden.

To verify condition (3.3.2) in specific models it is convenient to detail this relation. We
have by an elementary analysis the following.

Corollary 3.13. The relation (3.3.2) is equivalent to the following set of relations:∑
mc "=0

(fabcgdec + febcfdac) = 0 for mb = md = 0

ma "= 0 me "= 0 (3.3.31)

2
∑
mc "=0

fabcgdecmcme +
∑
mc "=0

1

mc
[fcebgdcama(m

2
c +m2

e −m2
b)− (a ↔ b)]

+
∑
mc=0

[f ′dcagcebmb − (a ↔ b)] = 0 for md = 0

me "= 0 ma "= 0 mb "= 0 (3.3.32)

2
∑
mc "=0

(m2
d +m2

e −m2
c)fabcfdec

−
∑
mc "=0

1

m2
c

[fcdafceb(m
2
c +m2

d −m2
a)(m

2
c +m2

e −m2
b)

−(a ↔ b)]− 4mambmdme
×

∑
mc=0

[gdcagceb − (a ↔ b)] = 0 for md "= 0 me "= 0 (3.3.33)

∑
mc "=0

fabcf
′
dec −mamb

∑
mc "=0

(gdcagceb − (a ↔ b))

−
∑
mc=0

(f ′cdaf
′
ceb − (a ↔ b)) = 0 for md = me = 0. (3.3.34)

Proof. One considers the separately distinct cases of (3.3.2), namely when md and
me are both equal to 0, both non-null, or only one of them is equal to 0 and one
obtains, respectively, (3.3.34), (3.3.33) and (3.3.31), (3.3.32) if one substitutes the explicit
expressions (3.2.37) and (3.2.38) for f ′abc. �

Now we have, as in [16], corollary 4.8.

Corollary 3.14. Suppose that the constants fabc, fabc, hab and h′ab verify the conditions from
the statements of theorems 3.1 and 3.10. Then, the general expression for the chronological
product T2 is given by the sum of the particular solution:

T c2 (x, y) =: T1(x)T1(y) : +T 0
2 (x, y) + T h2 (x, y) + iδ(x − y)

×[ 1
4fcabfcde : Aaν(x)Abν(x)A

µ

d (x)A
ν
e(x) :

−f ′cdaf ′ceb : Aaν(x)A
ν
b(x)"d(x)"e(x) :
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+
∑

ma,mb,md ,me "=0

3

2mb
f ′cabf

"
cde : "a(x)"b(x)"d(x)"e(x) :

−
∑
ma "=0

4

5ma
f ′cbagcdef : "a(x)"b(x)"d(x)"e(x)"f (x) :

−
∑
ma "=0

2

3ma
f ′dbah

′
cd : "a(x)"b(x)"c(x) : +L(x)] (3.3.35)

and a finite renormalization of the type iδ(x − y)N(x). Here the expressions T 0
2 (x, y) and

T h2 (x, y) have been defined previously (see the formulae (3.2.48), (3.2.49)) and the Wick
monomial N(x) is a finite normalization of the type (3.2.2). In particular, the theory is
renormalizable up to order two. The condition of unitarity can be satisfied if and only if
N(x)† = N(x).

We only note that the expression of the finite normalization follows from
expressions (3.3.19), (3.3.25)–(3.3.27) of g̃(1)abcd and g̃(5)abcd − g̃(8)abcd and h̃(3)abc.

Remark 3.15. It was noticed in [7] that the expression T11 from theorem 3.1 and the first finite
normalization from the preceding formula reconstruct the usual Yang–Mills Lagrangian. A
similar remark is in order in this context, namely the expression T12 from theorem 3.1 and the
second finite normalization from the preceding formula reconstruct the usual kinematic part of
the Higgs Lagrangian (see, for instance, [29]). The third normalization is a part of the Higgs
potential.

3.4. The standard model

It was clear from the preceding sections that in order to specify a certain concrete model of
heavy spin-1 bosons it is not sufficient to specify the gauge group G from theorem 3.1 but
one also needs to fix a basis in the Lie algebra Lie(G). This is a consequence of the fact that
the assignment of the masses ma , mb, etc is connected with a specific basis, and if we choose
another basis we will obtain fields which do not create particles of fixed mass.

For the case of the standard model it means that we have to specify the group, which in
this case is SU(2)×U(1) and the basis through the Weinberg angle. Explicitly, let us take in
the Lie algebra of SU(2)× U(1) the standard basis Xa , a = 0, 1, 2, 3 with the commutation
relations

[Xa,Xb] = εabcXc a, b = 1, 2, 3 [X0, Xa] = 0 a = 1, 2, 3. (3.4.1)

We consider another basis Ya , a = 0, 1, 2, 3 defined by

Ya = gXa a = 1, 2 Y3 = −g cos θX3 + g′ sin θX0

Y0 = −g sin θX3 − g′ cos θX0.
(3.4.2)

By definition, the angle θ , determined by the condition cos θ > 0 is called the Weinberg
angle. The constantsg andg′ are real withg > 0. Then one can show that the new commutation
rules produce the following structure constants [3]:

f210 = g sin θ f321 = g cos θ f310 = 0 f320 = 0 (3.4.3)

and the rest of the constants are determined by antisymmetry. By definition, the standard
model corresponds to this choice of constants and to the following assignment of masses:

m0 = 0 ma "= 0 a = 1, 2, 3. (3.4.4)
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We say that the particles created by Aµ0 are photons and the particles created by Aµa ,
a = 1, 2, 3 are heavy Bosons (more precisely, for a = 1, 2 we have the W-Bosons and for
a = 3 the Z-Boson).

We will derive below, directly from our general analysis, that the standard model is
compatible with all restrictions outlined in the previous analysis and we will see that the
only free parameters are, essentially, mH0 and f ′′000.

Theorem 3.16. In the standard model, the following relations are true:
(a) the masses of the heavy bosons are constrained by

m1 = m2 = m3 cos θ; (3.4.5)

(b) the constants f ′abc are completely determined by the antisymmetry property (3.2.10)
and

f ′011 = f ′022 =
εg

2
f ′033 =

εg

2 cos θ
f ′210 = g sin θ

f ′321 = −f ′312 =
g

2
f ′123 = −g

cos 2θ

2 cos θ

(3.4.6)

the rest of them being zero. Here ε can take the values + or −;
(c) the constants f ′′abc are (partially) determined by

f ′′abc = 0 for a, b, c = 1, 2, 3 f ′′00a = 0 for a "= 0

f ′′0ab = 0 a = 1, 2, 3 a "= b f ′′0aa =
εg

12m1
(mH0 )

2 a = 1, 2, 3. (3.4.7)

Proof. (i) We first consider the consistency relation (3.2.9) and immediately get thatm1 = m2.
The consistency condition (3.2.11) is trivial because from the antisymmetry property (3.2.10)
we have

f ′00a = 0 a = 0, 1, 2, 3. (3.4.8)

(ii) We investigate now the consistency condition (3.3.2). It is convenient to use it in the
detailed form (3.3.31)–(3.3.34). We mention briefly here the result of elementary computations.
From (3.3.31) we obtain equivalently that

g0ab = 0 a, b = 1, 2, 3 a "= b g011 = g022. (3.4.9)

From (3.3.32) only the case a = 1, b = 2 gives something non-trivial, namely

g033 = g011 = g022. (3.4.10)

Next, we consider relation (3.3.33). From the case d = 1, e = 2, a = 1, b = 2 we get

m2
1g

2
011 = g2

(
1− 3m2

3

4m2
1

cos2 θ

)
(3.4.11)

and from the case d = 1, e = 2, a = 2, b = 3

g022g033 = g2 m
2
3

4m4
1

cos2 θ, (3.4.12)

all other cases give identities. We observe now that the last two relations are consistent iff we
have

m1 = m3 cos θ. (3.4.13)

Finally, relation (3.3.34) is trivial. From the preceding relations, we can reconstruct all
the constants f ′abc as given in the statement.
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(iii) Now we consider the relation (3.3.4). It is not very hard to prove that if we also take
into account (3.2.13) we obtain only relations (c) from the statement.

(iv) The relation (3.3.6) gives

hab = 0 a "= b h11 = h22 = h33 = 2h′00. (3.4.14)

(v) Finally, the conditions (3.3.7) give no restrictions. We have obtained all the relations
from the statement. �

Remark 3.17. In the standard model one disregards the terms T15 and T16 from theorem 3.1
and it follows that the expression T h2 can be put to zero. One can also show [1] that it is
possible to fix ε = +. We note that we are left only with the Yang–Mills interaction of the
usual form. However, now we can carry out all the computations completely rigorously,
after we have conveniently split the distributions involved in the analysis. The choice
g = e

sin θ
, g′ = − e

cos θ
can be obtained if one includes interaction with matter and requires

that the interaction of the electron Dirac field with the electromagnetic potential has the usual
form.

We note in the end two facts. First, because of the equality m1 = m2 there exists a global
symmetry of the theory, namely the electric charge which commutes with the S-matrix.

Next, suppose we admit that the photon has a small non-zero mass m0 "= 0 and we try to
interpret the adiabatic limit as the process limm0↘0 limε↘0. One can easily prove that this is not
possible. Indeed, if all the masses ma , a = 0, . . . , 3 are non-zero, then the expressions f ′abc
are given by the expressions (3.2.37) for all values of the indices. One can plug this expression
into the relation (3.3.2), if one considers, for instance, the cases a = d = 0, b = e = 1 and
obtains the following relation:

m4
0 + 2(m2

2 −m2
1)m

2
0 + (m2

1 −m2
2)(m

2
1 + 3m2

2) = 0. (3.4.15)

In the case a = d = 0, b = e = 2 one obtains the preceding relation with m1 ↔ m2. If
we subtract the two relations, then we get

(m2
1 −m2

2)(m
2
0 −m2

1 −m2
2) = 0. (3.4.16)

We have two cases: ifm1 = m2 then from (3.4.15) we obtainm0 = 0; ifm2
0 = m2

1+m2
2 then

again (3.4.15) gives m1m2 = 0. So, we obtain that at least one of the masses ma , a = 0, 1, 2
must be null, which contradicts the hypothesis that all masses are non-zero.

4. Conclusions

We have analysed in full the possibilities of coupling non-trivially heavy bosons of spin-1 up to
order two of the perturbation theory. In particular we have reobtained in a rather elementary way
the standard model (without leptons). In a subsequent publication [17] we will investigate,
in our more general framework, the case when the leptons are included. In particular it is
expected, according to the usual analysis (see also [3]) that, going to the third order of the
perturbation theory, we will find out new restrictions on the parameters f ′′000 and g0000 and
also some restrictions on the Fermion sector, namely the cancellation of some anomaly (of the
Adler–Bell–Jackiw type).

Another extremely interesting problem is to investigate the class of Lie groups for which
there exists a non-trivial solution to our problem. Indeed, it is not obvious that any Lie group
of the type described in the statement of theorem 3.1 admits a representation of dimension
equal to the dimension of the group, realized by antisymmetric matrices and verifying the
mass relation (3.2.12). In the absence of a general solution, one should test the existence of
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a non-trivial solution of the perturbation series, at least for a simple Lie group like SU(5),
because such groups are characteristic of grand unified theories.

Finally, one should find explicit expressions for the distributions of the type DFmamb ··· and
perform rigorous computations for various cross sections of the standard model. In this way
one could check if some differences with respect to the usual computational approaches to the
standard model appear or, more probably, prove that one obtains the same results.
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